Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/60673
Full metadata record
DC FieldValueLanguage
dc.contributor.authorQicheng Guo-
dc.coverage.spatialМинскen_US
dc.date.accessioned2025-07-02T11:31:43Z-
dc.date.available2025-07-02T11:31:43Z-
dc.date.issued2025-
dc.identifier.citationQicheng Guo. Research on depth estimation for monocular cameras based on prior information / Qicheng Guo // Технологии передачи и обработки информации : материалы Международного научно-технического семинара, Минск, апрель 2025 г. / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: В. Ю. Цветков [и др.]. – Минск, 2025. – С. 179–182.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/60673-
dc.description.abstractThis study presents a monocular camera-based depth estimation method that estimates the distance between a vehicle and the camera using the camera's intrinsic parameters, distortion correction, and the size of the object in the camera's image. The method involves detecting a red rectangular tag with a known size positioned behind the vehicle, calculating its image width, and then using the camera's focal length and the tag's actual dimensions to estimate the depth. This approach does not rely on additional hardware sensors but achieves accurate distance estimation through image processing techniques, providing a potential solution for low-cost depth estimation. Experimental results demonstrate that the method is both accurate and computationally efficient, making it suitable for practical applications.en_US
dc.language.isoenen_US
dc.publisherБГУИРen_US
dc.subjectматериалы конференцийen_US
dc.subjectimage processingen_US
dc.subjectmonocular camerasen_US
dc.subjectvehiclesen_US
dc.subjectdeep learningen_US
dc.titleResearch on depth estimation for monocular cameras based on prior informationen_US
dc.typeArticleen_US
Appears in Collections:Технологии передачи и обработки информации : материалы Международного научно-технического семинара (2025)

Files in This Item:
File Description SizeFormat 
Qicheng_Guo_ Research (2).pdf454.05 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.