Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/60976
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGrusha, М. V.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2025-07-24T08:19:49Z-
dc.date.available2025-07-24T08:19:49Z-
dc.date.issued2025-
dc.identifier.citationGrusha, М. V. Analytical tools in marketing: case of Automated Tender Data Collection System / М. V. Grusha // Актуальные вопросы экономики и информационных технологий : сборник материалов докладов 61-й научной конференции аспирантов, магистрантов и студентов БГУИР, Минск, 20–25 апреля 2025 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2025. – С. 661–664.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/60976-
dc.description.abstractThis article explores modern analytical tools and methods for processing big data in marketing. The study focuses on the role of business intelligence systems, machine learning algorithms, and big data platforms in optimisng marketing decision-making. Additionally, the paper presents the development process of an Automated Tender Data Collection System designed to streamline the retrieval and analysis of procurement data. The main challenges encountered during development, such as handling dynamic web content and data filtering are described along with their solutions. The findings highlight the importance of automation in marketing analytics and its impact on efficiency.en_US
dc.language.isoenen_US
dc.publisherБГУИРen_US
dc.subjectматериалы конференцийen_US
dc.subjectmarketing analyticsen_US
dc.subjectdata analysisen_US
dc.subjectbig dataen_US
dc.subjectbusiness intelligence systemsen_US
dc.subjectmachine learningen_US
dc.subjectautomated data collectionen_US
dc.titleAnalytical tools in marketing: case of Automated Tender Data Collection Systemen_US
dc.typeArticleen_US
Appears in Collections:Актуальные вопросы экономики и информационных технологий : материалы 61-й научной конференции аспирантов, магистрантов и студентов (2025)

Files in This Item:
File Description SizeFormat 
Grusha_Analytical.pdf4.02 MBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.