| DC Field | Value | Language |
| dc.contributor.author | Hao Ni | - |
| dc.contributor.author | Hongfei Lian | - |
| dc.contributor.author | Qiuyu Liu | - |
| dc.contributor.author | Hongqi Fan | - |
| dc.coverage.spatial | Минск | en_US |
| dc.date.accessioned | 2025-09-08T06:27:40Z | - |
| dc.date.available | 2025-09-08T06:27:40Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.citation | D-S Evidence theory-driven FPGA architecture for radar and visual fusion algorithm / Hao Ni, Hongfei Lian, Qiuyu Liu, Hongqi Fan // Информационная безопасность : сборник материалов 61-й научной конференции аспирантов, магистрантов и студентов БГУИР, Минск, 21–25 апреля 2025 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2025. – С. 128–131. | en_US |
| dc.identifier.uri | https://libeldoc.bsuir.by/handle/123456789/61469 | - |
| dc.description.abstract | To address the issue oflow real-time fusion efficiency in multi-source sensor data, this paper
proposes an FPGA-based radar-vision fusion method using D-S evidence theory. By implementing a parallel
architecture and pipeline optimization, the fusion latency is reduced to the microsecond level while
improving resource utilization. Simulation experiments demonstrate that the proposed method offers high
reliability and low latency in autonomous driving scenarios, with potential scalability to intelligent
transportation systems. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | БГУИР | en_US |
| dc.subject | материалы конференций | en_US |
| dc.subject | D-S evidence theory | en_US |
| dc.subject | radar-vision fusion | en_US |
| dc.subject | autonomous driving | en_US |
| dc.title | D-S Evidence theory-driven FPGA architecture for radar and visual fusion algorithm | en_US |
| Appears in Collections: | Информационная безопасность : материалы 61-й научной конференции аспирантов, магистрантов и студентов (2025)
|