Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/61487
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhao, S. Y.-
dc.contributor.authorZhang, С.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2025-09-09T06:06:11Z-
dc.date.available2025-09-09T06:06:11Z-
dc.date.issued2025-
dc.identifier.citationZhao, S. Y. A review of YOLOv11 based on sar ship detection / S. Y. Zhao, С. Zhang // Информационная безопасность : сборник материалов 61-й научной конференции аспирантов, магистрантов и студентов БГУИР, Минск, 21–25 апреля 2025 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2025. – С. 98–100.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/61487-
dc.description.abstractSynthetic Aperture Radar (SAR) imaging technology holds significant value in military reconnaissance and maritime monitoring due to its all-weather and all-time imaging capabilities. Ship detection, as a core task of maritime monitoring, plays a crucial role in ensuring maritime safety, combating illegal fishing, protecting the marine environment, and military target reconnaissance. However, SAR images inherently suffer from noise, difficulties in detecting small targets, and interference from complex sea conditions, which pose challenges to the design of ship detection algorithms. In recent years, the YOLO series of algorithms has continuously evolved in SAR ship detection, with the latest version, YOLOv11, significantly improving detection accuracy and efficiency through innovations such as lightweight design, multi-scale feature modeling, and improved attention mechanisms. This paper analyzes the key technological features of YOLOv11 and its performance advantages in SAR ship detection while exploring its application prospects in complex scenarios and future optimization directions.en_US
dc.language.isoenen_US
dc.publisherБГУИРen_US
dc.subjectматериалы конференцийen_US
dc.subjectsynthetic aperture radarsen_US
dc.subjectYOLOv11en_US
dc.subjectimagesen_US
dc.titleA review of YOLOv11 based on sar ship detectionen_US
Appears in Collections:Информационная безопасность : материалы 61-й научной конференции аспирантов, магистрантов и студентов (2025)

Files in This Item:
File Description SizeFormat 
Zhao_A_Reviev.pdf152.93 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.