Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/61512
Title: Real-time detection of multi-scale miniature unmanned aerial vehicles based on YOLOv9
Authors: Shijie Chen
Xinpeng Lu
Jiashuo Sun
Zhichao Yin
Moufa Hu
Keywords: материалы конференций;unmanned aerial vehicles;detection methods;YOLOv9
Issue Date: 2025
Publisher: БГУИР
Citation: Real-time detection of multi-scale miniature unmanned aerial vehicles based on YOLOv9 / Shijie Chen, Xinpeng Lu, Jiashuo Sun [et al.] // Информационная безопасность : сборник материалов 61-й научной конференции аспирантов, магистрантов и студентов БГУИР, Минск, 21–25 апреля 2025 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2025. – С. 133–136.
Abstract: Aiming at the security risks of unregulated and unmanned aerial vehicles (UAVs), this paper proposes a new real-time detection method based on YOLOv9, which integrates reversible functions, programmable gradient information, and a generalized high-efficiency layer aggregation network, and combined with downsampling and local feature training method. Experiments show that the detection accuracy of the method is more than 90% and the processing frame rate is more than 20Hz.
URI: https://libeldoc.bsuir.by/handle/123456789/61512
Appears in Collections:Информационная безопасность : материалы 61-й научной конференции аспирантов, магистрантов и студентов (2025)

Files in This Item:
File Description SizeFormat 
Shijie_Real-time.pdf656.78 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.