Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/62009
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDi Zhao-
dc.contributor.authorYi Tang-
dc.contributor.authorPertsau, D.-
dc.contributor.authorKupryianava, D.-
dc.contributor.authorGourinovitch, A.-
dc.coverage.spatialŽilina, Slovakiaen_US
dc.date.accessioned2025-11-19T09:14:20Z-
dc.date.available2025-11-19T09:14:20Z-
dc.date.issued2024-
dc.identifier.citationMedical Image Segmentation with Graph Reasoning / Di Zhao, Yi Tang, D. Pertsau [et al.] // Workshop on RECI : The Third International Workshop on Reliability Engineering and Computational Intelligence : Book of Abstracts, Žilina, Slovakia, November 6-8, 2024. – Žilina, 2024. – P. 88.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/62009-
dc.description.abstractThis paper introduces a novel Synergistic Edge-Guided Graph Reasoning Network (SEGRNet) designed to address the limitations of traditional Convolutional Neural Networks (CNNs) in medical image segmentation, particularly in capturing global information and modeling complex topological relationships. Existing CNNbased methods, such as U-Net and its variants, suffer from limited receptive fields, hindering their ability to capture comprehensive global context, especially in structurally complex biological tissues.en_US
dc.language.isoenen_US
dc.publisherEDIS-Publishing House UNIZA, Univerzitná HBen_US
dc.subjectпубликации ученыхen_US
dc.subjectmedical image segmentationen_US
dc.subjectgraph reasoningen_US
dc.subjectgraph convolutional networken_US
dc.titleMedical Image Segmentation with Graph Reasoningen_US
dc.typeArticleen_US
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
Di_Zhao_Medical.pdf1.02 MBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.