Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/62988
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYizhou He-
dc.contributor.authorQianxi Hao-
dc.contributor.authorChi Zhang-
dc.contributor.authorQi Wang-
dc.contributor.authorWenxin Zeng-
dc.contributor.authorJiamin Yu-
dc.contributor.authorXue Yang-
dc.contributor.authorShaorong Li-
dc.contributor.authorXiaowei Guo-
dc.contributor.authorLazarouk, S. K.-
dc.coverage.spatialUnited Kingdomen_US
dc.date.accessioned2026-02-17T08:08:10Z-
dc.date.available2026-02-17T08:08:10Z-
dc.date.issued2025-
dc.identifier.citationFacile synthesis of silicon quantum dots with photoluminescence in the near-ultraviolet to violet region via wet oxidation / Yizhou He, Qianxi Hao, Chi Zhang [et al.] // Journal of Materials Chemistry C. – 2025. – Vol. 13, iss. 3. – P. 1228–1242.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/62988-
dc.description.abstractTo extend the photoluminescence (PL) of silicon quantum dots (SiQDs) into the near-ultraviolet–violet (NUVV) region, the size of SiQDs must be reduced to less than 1.53 nm. However, this significantly increases both the difficulty and the cost of synthesis. Herein, we report a facile wet oxidation treatment to obtain SiQDs with PL emission in the NUVV region while elucidating their emission mechanism. The synthesized SiQDs exhibit an average diameter of 4.95 nm, with F-band emission peaks ranging from 332 to 420 nm, which are blue-shifted by approximately 500 nm compared to the near-infrared (NIR) counterparts lacking wet oxidation treatment. Notably, the synthesized SiQDs achieve an average photoluminescence quantum yield (PLQY) of 19.05%, a 6.24-fold increase over their NIR counterparts. Comprehensive examinations attribute this NUVV emission to two types of oxygen defects: peroxy linkage (POL) and oxygen-deficient center (ODC(I)). Under wet oxidation conditions, SiOx networks containing these oxygen defects, rather than simple Si–O–Si groups, are formed on the surface of SiQDs. Furthermore, after storing the SiQDs in ambient air for approximately two months, no intrinsic or additional defect-induced emissions were observed, and 88% of the initial PLQY was retained, indicating favorable stability of the SiQDs. This study provides valuable insights into oxygen-related defect-induced emission mechanisms on SiQD surfaces.en_US
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.subjectпубликации ученыхen_US
dc.subjectphotoluminescenceen_US
dc.subjectsilicon quantum dotsen_US
dc.subjectoxygen defectsen_US
dc.subjectquantum yielden_US
dc.titleFacile synthesis of silicon quantum dots with photoluminescence in the near-ultraviolet to violet region via wet oxidationen_US
dc.typeArticleen_US
dc.identifier.DOI10.1039/d4tc02095b-
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
Yizhou_He_Facile.pdf4.55 MBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.