Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/7459
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMinchenko, L. L.-
dc.contributor.authorLeschov, A. E.-
dc.date.accessioned2016-06-13T09:09:26Z-
dc.date.accessioned2017-07-27T12:10:29Z-
dc.date.available2016-06-13T09:09:26Z-
dc.date.available2017-07-27T12:10:29Z-
dc.date.issued2016-
dc.identifier.citationMinchenko, L. On strong and weak second-order necessary optimality conditions for nonlinear programming / L. Minchenko, A. Leschov // Optimization: A Journal of Mathematical Programming and Operations Research. – 2016. – 11 р.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/7459-
dc.description.abstractSecond-order necessary optimality conditions play an important role in optimization theory. This is explained by the fact that most numerical optimization algorithms reduce to finding stationary points satisfying first- order necessary optimality conditions. As a rule, optimization problems, especially the high dimensional ones, have a lot of stationary points so one has to use second-order necessary optimality conditions to exclude nonoptimal points. These conditions are closely related to second-order constraint qualifications, which guarantee the validity of second-order necessary optimality conditions. In this paper, strong and weak second-order necessary optimality conditions are considered and their validity proved under so-called critical regularity condition at local minimizers.ru_RU
dc.language.isoenru_RU
dc.subjectпубликации ученыхru_RU
dc.subjectnonlinear programmingru_RU
dc.subjectnecessary optimality conditionsru_RU
dc.subjectconstraint qualificationsru_RU
dc.titleOn strong and weak second-order necessary optimality conditions for nonlinear programmingru_RU
dc.typeArticleru_RU
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
On strong_1.pdf165.18 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.