Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/10407
Title: The Stability Box for Minimizing Total Weighted Flow Time under Uncertain Data
Authors: Sotskov, Y. N.
Tsung-Chyan Lai
Werner, F.
Keywords: публикации ученых;одностадийное обслуживания требований;неопределенность данных;взвешенные моменты завершения обслуживания требований;метод основанный на устойчивости;single-machine scheduling;uncertain data;total weighted flow time;stability analysis
Issue Date: 2013
Publisher: Springer
Citation: Sotskov, Y. N. The Stability Box for Minimizing Total Weighted Flow Time under Uncertain Data / Y. N. Sotskov, Tsung-Chyan Lai, Frank Werner // Simulation and Modeling Methodologies, Technologies and Applications / editors: Nuno Pina, Janusz Kacprzyk, Joaquim Filipe. – Berlin, Heidelberg, 2013. – P. 36–55.
Abstract: We consider an uncertain single-machine scheduling problem, in which the processing time of a job can take any real value from a given closed interval. The criterion is to minimize the sum of weighted completion times of the n jobs, a weight being associated with each job. For a job permutation, we study the stability box, which is a subset of the stability region. We derive an O(n log n) algorithm for constructing a job permutation with the largest dimension and volume of a stability box. The efficiency of such a permutation is demonstrated via a simulation on a set of randomly generated instances with 1000 ≤ n ≤ 2000. If several permutations have the largest dimension and volume of a stability box, the developed algorithm selects one of them due to a mid-point heuristic.
URI: https://libeldoc.bsuir.by/handle/123456789/10407
DOI: https://doi.org/10.1007/978-3-642-34336-0_3
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
051006.pdf534.78 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.