Skip navigation
Please use this identifier to cite or link to this item:
Title: Integration of artificial neural networks and knowledge bases
Authors: Golovko, V. A.
Kroshchanka, A. A.
Golenkov, V. V.
Ivashenko, V. P.
Kovalev, M. V.
Taberko, V. V.
Ivaniuk, D. S.
Keywords: материалы конференций
knowledge base
Issue Date: 2018
Publisher: БГУИР
Citation: Integration of artificial neural networks and knowledge bases / V. A. Golovko and others // Открытые семантические технологии проектирования интеллектуальных систем = Open Semantic Technologies for Intelligent Systems (OSTIS-2018) : материалы международной научно-технической конференции (Минск, 15 - 17 февраля 2018 года) / редкол. : В. В. Голенков (отв. ред.) [и др.]. – Минск : БГУИР, 2018. – С. 133 - 146.
Abstract: This article reviews the questions and directions of integration of artificial neural networks with knowledge bases. There are two main directions of integration: 1) the inputs and outputs of artificial neural network to use integration of knowledge bases and artificial neural networks for solutions of application problems; 2) by artificial neural network representation on the basis of ontological structures and its interpretation by means of knowl- edge processing in the knowledge base providing an intelligent environment for the development, training and integration of different artificial neural networks compatible with knowledge bases. The knowledge bases that are integrated with artificial neu- ral networks are built on the basis of homogeneous semantic networks and multiagent approach to represent and process knowledge.
Appears in Collections:OSTIS-2018

Files in This Item:
File Description SizeFormat 
Golovko_Integration.PDF630,6 kBAdobe PDFView/Open
Show full item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.