Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/34724
Title: Analysis of support vector machine based decoding algorithm for bose-chaudhuri-hocquenghem codes
Other Titles: Анализ алгоритма декодирования БЧХ кодов, основанного на методе опорных векторов
Authors: Galchenko, M. I.
Ramanouski, Y. Y.
Spichekova, N. V.
Keywords: материалы конференций;BCH codes;syndrome norm;multi-class classification;Support Vector Machine
Issue Date: 2019
Publisher: БГУИР
Citation: Galchenko, M. I. Analysis of support vector machine based decoding algorithm for bose-chaudhuri-hocquenghem codes / M. I. Galchenko, Y. Y. Ramanouski, N. V. Spichekova // BIG DATA and Advanced Analytics = BIG DATA и анализ высокого уровня : сборник материалов V Международной научно-практической конференции, Минск, 13–14 марта 2019 г. В 2 ч. Ч. 1 / Белорусский государственный университет информатики и радиоэлектроники; редкол. : В. А. Богуш [и др.]. – Минск, 2019. – С. 34 – 43.
Abstract: In modern communication systems data is exchanged over unreliable noisy channels that cause the data to be altered by errors. To combat the problem, specially designed error correcting codes are applied to transmit the message over the channel. Bose-Chaudhuri-Hocquenghem (BCH) is a class of codes that are widely applied in practice. Apart from the classical decoding algorithms developed in the latter half part of the 20th century, a number of alternative approaches have been proposed. Among other things, it has been suggested to apply Support Vector Machine (SVM), machine learning classification and regression technique, to decode BCH codes. In this paper characteristics of the SVM based decoding approach is analyzed. Properties of two its modifications are considered.
URI: https://libeldoc.bsuir.by/handle/123456789/34724
Appears in Collections:BIG DATA and Advanced Analytics = BIG DATA и анализ высокого уровня : материалы конференции (2019)

Files in This Item:
File Description SizeFormat 
Galchenko_Analysis.PDF1.17 MBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.