Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/34741
Title: A taxonomy creation for agriculture using classical machine learning algorithms
Authors: Paulavets, M. E.
Porciello, J.
Kiryllau, Y. I.
Einarson, S.
Keywords: материалы конференций;machine learning;natural language processing;word embeddings
Issue Date: 2019
Publisher: БГУИР
Citation: A taxonomy creation for agriculture using classical machine learning algorithms / M. E. Paulavets [et al.] // BIG DATA and Advanced Analytics = BIG DATA и анализ высокого уровня : сборник материалов V Международной научно-практической конференции, Минск, 13–14 марта 2019 г. В 2 ч. Ч. 1 / Белорусский государственный университет информатики и радиоэлектроники; редкол. : В. А. Богуш [и др.]. – Минск, 2019. – С. 44 – 49.
Abstract: The Ceres2030 is an evidence and cost modeling program to support donor-decision making on high-impact interventions needed to end hunger and transform the lives of the world's poorest farmers (Sustainable Development Goal 2). Policy and decision-makers are interested in finding useful techniques and approaches to address urgent problems. Our goal was to automate the process of finding interventions, a colloquially used term, in articles and to make it easier for researchers and non-researchers search for scientific achievements. We used machine learning semantic models to generate a taxonomy of agricultural interventions and outcomes relevant to policy-makers. The intervention classifier was built with the help of classical machine learning algorithms, and our first results show the possibility of making use of even small datasets for natural language processing tasks.
URI: https://libeldoc.bsuir.by/handle/123456789/34741
Appears in Collections:BIG DATA and Advanced Analytics = BIG DATA и анализ высокого уровня : материалы конференции (2019)

Files in This Item:
File Description SizeFormat 
Paulavets_A_taxonomy.PDF736.35 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.