Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/37247
Title: Algorithmic determination of immobile indices in convex SIP problems with polyhedral index sets
Authors: Kostyukova, O. I.
Tchemisova, T. V.
Keywords: semi-infinite programming
convex programming
immobile index
immobility order
cone of feasible directions
extremal ray
Issue Date: 2019
Publisher: Taylor & Francis
Citation: Kostyukova, O. I. Algorithmic determination of immobile indices in convex SIP problems with polyhedral index sets / O. I. Kostyukova, T. V. Tchemisova // INFOR : Information Systems and Operational Research. – 2019. – P. 1-20. – DOI : 10.1080/03155986.2018.1553754.
Abstract: The concepts of immobile indices and their immobility orders are objective and important characteristics of feasible sets of semi-infinite programming (SIP) problems. They can be used for the formulation of new efficient optimality conditions without constraint qualifications. Given a class of convex SIP problems with polyhedral index sets, we describe and justify a finite constructive algorithm (algorithm DIIPS) that allows to find in a finite number of steps all immobile indices and the corresponding immobility orders along the feasible directions. This algorithm is based on a representation of the cones of feasible directions in the polyhedral index sets in the form of linear combinations of extremal rays and on the approach proposed in our previous papers for the cases of immobile indices’ sets of simpler structures. A constructive procedure of determination of the extremal rays is described, and an example illustrating the application of the DIIPS algorithm is provided.
URI: https://libeldoc.bsuir.by/handle/123456789/37247
Appears in Collections:Публикации в изданиях других стран

Files in This Item:
File Description SizeFormat 
Kostyukova_Algorithmic.pdf152,45 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.