Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/38635
Title: Deep Learning in Processing Medical Images and Calculating the Orbit Volume
Authors: Asipovich, V. S.
Dudich, O. N.
Krasilnikova, V. L.
Karakulko, A. A.
Radnionok, A. L.
Moroz, P. A.
Nikolaev, A. Y.
Konovalova, M. A.
Yashin, K. D.
Keywords: публикации ученых;Orbit;Orbit volume;Deep learning;Neural network;Biomedical images
Issue Date: 2019
Publisher: Springer
Citation: Deep Learning in Processing Medical Images and Calculating the Orbit Volume / V. S. Asipovich [and other] // 4-th International Conference on Nanotechnologies and Biomedical Engineering : Proceedings of ICNBME-2019, Chisinau, Moldova, September 18-21, 2019 / editors : Ion Tiginyanu, Victor Sontea, Serghei Railean. – Switzerland : Springer Nature Switzerland, 2019. – Vol. 77. – P. 519-522. – (IFMBE Proceedings).
Abstract: A software tool for calculating the volume of a soft-tissue eye orbit using the deep learning of neural network Mask R-CNN has been developed and tested. The result of the development will be in demand when evaluating the results of surgical intervention for the reconstruction of the thin bones of the orbit. It was established that the inaccuracy in constructing the contour of a soft-tissue orbit is 4–8%.
URI: https://libeldoc.bsuir.by/handle/123456789/38635
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
Asipovich_Deep.pdf535.88 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.