https://libeldoc.bsuir.by/handle/123456789/39073| Title: | Applications of second order ornstein unlenbeck stochastic processes to credit risk modeling | 
| Authors: | Vaskouski, M. | 
| Keywords: | материалы конференций;Ornstein-Uhlenbeck processes;mean reverting;macroeconomic factors;rough path integration theory | 
| Issue Date: | 2020 | 
| Publisher: | Беспринт | 
| Citation: | Vaskouski, M. Applications of second order ornstein unlenbeck stochastic processes to credit risk modeling / M. Vaskouski // BIG DATA and Advanced Analytics = BIG DATA и анализ высокого уровня: сборник материалов VI Международной научно-практической конференции, Минск, 20–21 мая 2020 г. : в 3 ч. Ч. 1 / Белорусский государственный университет информатики и радиоэлектроники [и др.] ; редкол.: В. А. Богуш [и др.]. – Минск, 2020. – С. 105–111. | 
| Abstract: | We consider applications of second order stochastic processes for analysis and forecasting credit loss. In contrast to the Vasicek model based on the one-dimensional Ornstein-Uhlenbeck stochastic differential equation driven by the Wiener process, we study two-dimensional analogues of Ornstein-Uhlenbeck processes driven by fractional Brownian motions. These processes are applied to extrapolation of macroeconomic factors for modeling account loss probability. Second order Ornstein-Uhlenbeck stochastic processes capture local behavior of economic factors providing more realistic tools in comparison with the first order Ornstein-Uhlenbeck processes. The obtained results are applied to different types of account loss rate models in frame of FASB’s Current Expected Credit Loss (CECL) and IASB’s International Financial Reporting Standards 9 (IFRS 9) rules. | 
| URI: | https://libeldoc.bsuir.by/handle/123456789/39073 | 
| ISBN: | 978-985-90533-7-5 | 
| Appears in Collections: | BIG DATA and Advanced Analytics = BIG DATA и анализ высокого уровня : материалы конференции (2020) | 
| File | Description | Size | Format | |
|---|---|---|---|---|
| Vaskouski_Applications.pdf | 742.4 kB | Adobe PDF | View/Open | 
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.