Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/39073
Title: Applications of second order ornstein unlenbeck stochastic processes to credit risk modeling
Authors: Vaskouski, M.
Keywords: материалы конференций;Ornstein-Uhlenbeck processes;mean reverting;macroeconomic factors;rough path integration theory
Issue Date: 2020
Publisher: Беспринт
Citation: Vaskouski, M. Applications of second order ornstein unlenbeck stochastic processes to credit risk modeling / M. Vaskouski // BIG DATA and Advanced Analytics = BIG DATA и анализ высокого уровня: сб. материалов VI Междунар. науч. - практ. конф., Минск, 20-21 мая 2020 года: в 3 ч. Ч. 1 / редкол.: В. А. Богуш [и др.]. – Минск : Бестпринт, 2020. – С. 105–111.
Abstract: We consider applications of second order stochastic processes for analysis and forecasting credit loss. In contrast to the Vasicek model based on the one-dimensional Ornstein-Uhlenbeck stochastic differential equation driven by the Wiener process, we study two-dimensional analogues of Ornstein-Uhlenbeck processes driven by fractional Brownian motions. These processes are applied to extrapolation of macroeconomic factors for modeling account loss probability. Second order Ornstein-Uhlenbeck stochastic processes capture local behavior of economic factors providing more realistic tools in comparison with the first order Ornstein-Uhlenbeck processes. The obtained results are applied to different types of account loss rate models in frame of FASB’s Current Expected Credit Loss (CECL) and IASB’s International Financial Reporting Standards 9 (IFRS 9) rules.
URI: https://libeldoc.bsuir.by/handle/123456789/39073
ISBN: 978-985-90533-7-5
Appears in Collections:BIG DATA and Advanced Analytics = BIG DATA и анализ высокого уровня : материалы конференции (2020)

Files in This Item:
File Description SizeFormat 
Vaskouski_Applications.pdf742.4 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.