Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/45797
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDrozdov, I.-
dc.date.accessioned2021-11-04T08:51:27Z-
dc.date.available2021-11-04T08:51:27Z-
dc.date.issued2021-
dc.identifier.citationDrozdov, I. Time series analysis of water pollution data / I. Drozdov // Nano-Desing, Tehnology, Computer Simulations =Нанопроектирование, технология, компьютерное моделирование (NDTCS-2021) : тезисы докладов XIX Международного симпозиума, Минск, 28-29 октября 2021 года / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: В. А. Богуш [и др.]. – Минск, 2021. – P. 100–102.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/45797-
dc.description.abstractAim of this paper is to apply time series analysis methods to investigate water pollution in Ukraine. We are using datasets provided by the Ukrainian government (State Water Resources Agency of Ukraine) which contain information about biochemical oxygen demand (BOD), ammonium ions concentration and phosphate ions concentration in river water. Values of concentration are measured at eight consequent water stations. The original data contest was aimed to predict concentration level at one of the stations using values at the other ones. Time series values have got periods of missing data. First of all, these missing parts need to be calculated. Spline functions have been used to solve this task. In the paper mathematical models describing behavior of concentration and BOD level time series at the target station are built. Also, models aimed to describe dependence of concentration at the target station on levels at the other stations are constructed and investigated. Influence of pollution values at intermediate stations on levels at the target stations are investigated with statistical tests. The proposed technique can be used to investigate pollution at plants in other domains of industry and to handle missing values in various time series.ru_RU
dc.language.isoenru_RU
dc.publisherБГУИРru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectconference proceedingsru_RU
dc.subjecttime series analysisru_RU
dc.subjectwater pollutionru_RU
dc.titleTime series analysis of water pollution dataru_RU
dc.typeСтатьяru_RU
Appears in Collections:NDTCS 2021

Files in This Item:
File Description SizeFormat 
Drozdov_Time.pdf530.29 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.