Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/45798
Title: Joint Dataset for CNN-based Person Re-identification
Authors: Ihnatsyeva, S.
Bohush, R.
Ablameyko, S.
Keywords: материалы конференций;conference proceedings;large-scale dataset;cross domain;convolution neural network;PolReID dataset
Issue Date: 2021
Publisher: UIIP NASB
Citation: Ihnatsyeva, S. Joint Dataset for CNN-based Person Re-identification / Ihnatsyeva S., Bohush R., Ablameyko S. // Pattern Recognition and Information Processing (PRIP'2021) = Распознавание образов и обработка информации (2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. – Minsk, 2021. – P. 33–37.
Abstract: In this paper, we propose a joint dataset for person re-identification task that includes the existing public datasets CUHK02, CUHK03, Market, Duke, LPW and our collected PolReID. We investigate the training dataset size and composition effect on the re-identification accuracy. We carried out a number of experiments with different size of dataset to solve re-identification task. The results of experiments are presented.
URI: https://libeldoc.bsuir.by/handle/123456789/45798
Appears in Collections:Pattern Recognition and Information Processing (PRIP'2021) = Распознавание образов и обработка информации (2021)

Files in This Item:
File Description SizeFormat 
Ihnatsyeva_Joint.pdf981.4 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.