Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/4584
Title: An ann-based method for vocal fold pathology diagnosis
Other Titles: Диагностика патологии голосового тракта на основе нейронных сетей
Authors: Majidnezhad, Vahid
Kheidorov, I. E.
Keywords: Wavelet Packet Decomposition;Mel-Frequency-Cepstral-Coefficient (MFCC);Principal-Component Analysis (PCA);Artificial Neural Network (ANN);патология голосового тракта;сети нейронные
Issue Date: 2013
Publisher: БГУИР
Citation: Majidnezhad, Vahid. An ann-based method for vocal fold pathology diagnosis / Vahid Majidnezhad, Igor Kheidorov // Открытые семантические технологии проектирования интеллектуальных систем = Open Semantic Technologies for Intelligent Systems (OSTIS-2013) : материалы III Междунар. научн.-техн. конф. (Минск, 21-23 февраля 2013г.) / редкол. : В. В. Голенков (отв. ред.) [и др.]. – Минск : БГУИР, 2013. – С. 387 – 390.
Abstract: There are different algorithms for vocal fold pathology diagnosis. These algorithms usually have three stages which are Feature Extraction, Feature Reduction and Classification. While the third stage implies a choice of a variety of machine learning methods, the first and second stages play a critical role in performance and accuracy of the classification system. In this paper we present initial study of feature extraction and feature reduction in the task of vocal fold pathology diagnosis. A new type of feature vector, based on wavelet packet decomposition and Mel- Frequency-Cepstral-Coefficients (MFCCs), is proposed. Also Principal-Component Analysis (PCA) is used for feature reduction. An Artificial Neural Network is used as a classifier for evaluating the performance of our proposed method.
Alternative abstract: В этой статье представляется метод искусственных нейронных сетей для решения задач диагностики патологии голосового тракта.
URI: https://libeldoc.bsuir.by/handle/123456789/4584
Appears in Collections:OSTIS-2013

Files in This Item:
File Description SizeFormat 
Majidnezhad_An.PDF526.5 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.