Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/45873
Title: Development of Molecular Autoencoders as Generators of Protein Inhibitors: Application for Prediction of Potential Drugs Against Coronavirus SARS-CoV-2
Authors: Shuldau, M.
Yushkevich, A.
Bosko, I.
Tuzikov, A.
Andrianov, A.
Keywords: материалы конференций;conference proceedings;SARS-CoV-2;main protease;deep learning;generative autoencoder;semi-supervised learning;virtual screening;molecular docking
Issue Date: 2021
Publisher: UIIP NASB
Citation: Development of Molecular Autoencoders as Generators of Protein Inhibitors: Application for Prediction of Potential Drugs Against Coronavirus SARS-CoV-2 / Shuldau M. [et al.] // Pattern Recognition and Information Processing (PRIP'2021) = Распознавание образов и обработка информации (2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. – Minsk, 2021. – P. 153–158.
Abstract: A generative autoencoder for the rational design of potential inhibitors of the SARS-CoV-2 main protease able to block the catalytic site of this functionally important viral enzyme was developed.
URI: https://libeldoc.bsuir.by/handle/123456789/45873
Appears in Collections:Pattern Recognition and Information Processing (PRIP'2021) = Распознавание образов и обработка информации (2021)

Files in This Item:
File Description SizeFormat 
Shuldau_Development.pdf1.14 MBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.