Skip navigation
Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMukha, V. S.-
dc.contributor.authorKako, N. F.-
dc.coverage.spatialРеспублика Беларусь-
dc.identifier.citationMukha, V. S. Total probability and bayes formulae for joint multidimensional–matrix Gaussian distributions = Формулы полной вероятности и байеса для совместных многомерно-матричных гауссовских распределений / V. S. Mukha, N. F. Kako // Весці Нацыянальнай акадэміі навук Беларусі. Серыя фізіка-матэматычных навук = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series. – 2022. – vol. 58, №. 1 – P. 48–59.ru_RU
dc.description.abstractThis paper is devoted to the development of a mathematical tool for obtaining the Bayesian estimations of the parameters of multidimensional regression objects in their finite-dimensional multidimensional-matrix description. Such a need arises, particularly, in the problem of dual control of regression objects when multidimensional-matrix mathematical formalism is used for the description of the controlled object. In this paper, the concept of a one-dimensional random cell is introduced as a set of multidimensional random matrices (in accordance with the “cell array” data type in the Matlab programming system), and the definition of the joint multidimensional-matrix Gaussian distribution is given (the definition of the Gaussian one-dimensional random cell). This required the introduction of the concepts of one-dimensional cell of the mathematical expectation and two-dimensional cell of the variance-covariance of the one-dimensional random cell. The integral connected with the joint Gaussian probability density function of the multidimensional matrices is calculated. The two formulae of the total probability and the Bayes formula for joint multidimensional-matrix Gaussian distributions are given. Using these results, the Bayesian estimations of the unknown coefficients of the multidimensional-matrix polynomial regression function are obtained. The algorithm of the calculation of the Bayesian estimations is realized in the form of the computer program. The results represented in the paper have theoretical and algorithmic generality.ru_RU
dc.subjectпубликации ученыхru_RU
dc.subjectGaussian random cellru_RU
dc.titleTotal probability and bayes formulae for joint multidimensional–matrix Gaussian distributionsru_RU
Appears in Collections:Публикации в изданиях Республики Беларусь

Files in This Item:
File Description SizeFormat 
Muha_TOTAL.pdf559.74 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.