Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/49752
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPribytko, P. D.-
dc.contributor.authorShvedova, O. A.-
dc.coverage.spatialДонецкru_RU
dc.date.accessioned2023-01-20T08:49:31Z-
dc.date.available2023-01-20T08:49:31Z-
dc.date.issued2022-
dc.identifier.citationPribytko, P. D. Automated video surveillance system using neural networks for object recognition / P. D. Pribytko, O. A. Shvedova // Информатика, управляющие системы, математическое и компьютерное моделирование : cборник материалов 13-ой международной научно-технической конференции / Донецкий национальный технический университет. – Донецк, 2022. – С. 228-231.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/49752-
dc.description.abstractThe uniqueness of the developed automated system lies in the use of technologies based on neural networks, which allows the equipment to use the “Deep Learning” effect. Considering the unfavorable epidemiological situation, thermal equipment is integrated into the automated system which enables to carry out thermometric measuring when visiting the enterprise. The advantages of this system are such as the following: monitoring the integrity of the protected perimeter, organization of time tracking and organization of preventive measures (COVID).ru_RU
dc.language.isoenru_RU
dc.publisherДонНТУru_RU
dc.subjectпубликации ученыхru_RU
dc.subjectsecurity systemsru_RU
dc.subjectvideo surveillanceru_RU
dc.subjectneural network technologiesru_RU
dc.subjectaccess control and management systemsru_RU
dc.subjectbiometric technologiesru_RU
dc.subjectCOVID-19ru_RU
dc.titleAutomated video surveillance system using neural networks for object recognitionru_RU
dc.typeArticleru_RU
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
Pribytko_Automated.pdf288.45 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.