Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/49752
Title: Automated video surveillance system using neural networks for object recognition
Authors: Pribytko, P. D.
Shvedova, O. A.
Keywords: публикации ученых;security systems;video surveillance;neural network technologies;access control and management systems;biometric technologies;COVID-19
Issue Date: 2022
Publisher: ДонНТУ
Citation: Pribytko, P. D. Automated video surveillance system using neural networks for object recognition / P. D. Pribytko, O. A. Shvedova // Информатика, управляющие системы, математическое и компьютерное моделирование : cборник материалов 13-ой международной научно-технической конференции / Донецкий национальный технический университет. – Донецк, 2022. – С. 228-231.
Abstract: The uniqueness of the developed automated system lies in the use of technologies based on neural networks, which allows the equipment to use the “Deep Learning” effect. Considering the unfavorable epidemiological situation, thermal equipment is integrated into the automated system which enables to carry out thermometric measuring when visiting the enterprise. The advantages of this system are such as the following: monitoring the integrity of the protected perimeter, organization of time tracking and organization of preventive measures (COVID).
URI: https://libeldoc.bsuir.by/handle/123456789/49752
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
Pribytko_Automated.pdf288.45 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.