Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/51904
Title: Human physical activity recognition algorithm based on smartphone data convolutional nerual network and long short time memory
Authors: Yang, Z. X.
Chen, Z. Y.
Keywords: материалы конференций;CNN;acceleration sensor;neural network;machine learning
Issue Date: 2023
Publisher: БГУИР
Citation: Yang, Z. X. Human physical activity recognition algorithm based on smartphone data convolutional nerual network and long short time memory / Z. X. Yang, Z. Y. Chen // Технологии передачи и обработки информации : материалы Международного научно-технического семинара, Минск, март-апрель 2023 г. / Белорусский государственный университет информатики и радиоэлектроники; редкол.: В. Ю. Цветков [и др.]. – Минск, 2023. – С. 102–107.
Abstract: A deep learning framework for activity recognition based on smartphone acceleration sensor data, convolutional neural network (CNN) and long short-term memory (LSTM) is proposed in the paper. The proposed framework aims to improve the accuracy of human activity recognition (HAR) by combining the strengths of CNN and LSTM. The CNN is used to extract features from the acceleration data and the LSTM is used to model the temporal dependencies of the data. The proposed framework is evaluated on the publicly available dataset, it includes 6 different actions: walking, walking upstairs, walking downstairs, sitting, standing, and laying. The recognition accuracy has reached 94 %.
URI: https://libeldoc.bsuir.by/handle/123456789/51904
Appears in Collections:Технологии передачи и обработки информации : материалы Международного научно-технического семинара (2023)

Files in This Item:
File Description SizeFormat 
Yang_Human.pdf499.12 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.