Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/51955
Title: Human physical activity recognition algorithm based on smartphone data and long short time memory neural network
Authors: Chen, Z. Y.
Yang, Z. X.
Li, H.
Keywords: материалы конференций;Mobile acceleration sensor;long short time memory;action recognition
Issue Date: 2023
Publisher: БГУИР
Citation: Chen, Z. Y. Human physical activity recognition algorithm based on smartphone data and long short time memory neural network / Chen Z. Y., Yang Z. X., Li H. // Информационная безопасность : сборник материалов 59-й научной конференции аспирантов, магистрантов и студентов БГУИР, Минск, 17–21 апреля 2023 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2023. – С. 160–162.
Abstract: The continuous advancement of smartphone sensors has brought more opportunities for the universal application of human motion recognition technology. Based on the data of the mobile phone's three-axis acceleration sensor, using combining a double-layer Long Short Time Memory (LSTM) and full connected layers allow us to improve human actions recognition accuracy, including walking, jogging, sitting, standing, and going up and down stairs. This is helpful for smart assistive technology. It is shown that physical activity classification accuracy is equal to 98.4 %.
URI: https://libeldoc.bsuir.by/handle/123456789/51955
Appears in Collections:Информационная безопасность : материалы 59-й научной конференции аспирантов, магистрантов и студентов (2023)

Files in This Item:
File Description SizeFormat 
Chen_Human.pdf507.62 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.