https://libeldoc.bsuir.by/handle/123456789/54755
Title: | Оптимизация взаимодействия машинного обучения и кибербезопасности для надежной цифровой защиты |
Other Titles: | Optimizing the interaction of machine learning and cybersecurity for robust digital defense |
Authors: | Голованов, Р. А. Войтович, А. А. Василькова, А. Н. |
Keywords: | материалы конференций;информационные технологии;кибербезопасность;защита информации;искусственный интеллект;машинное обучение |
Issue Date: | 2024 |
Publisher: | БГУИР |
Citation: | Голованов, Р. А. Оптимизация взаимодействия машинного обучения и кибербезопасности для надежной цифровой защиты = Optimizing the interaction of machine learning and cybersecurity for robust digital defense / Р. А. Голованов, А. А. Войтович, А. Н. Василькова // BIG DATA и анализ высокого уровня = BIG DATA and Advanced Analytics : сборник научных статей X Международной научно-практической конференции, Минск, 13 марта 2024 г. : в 2 ч. Ч. 1 / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: В. А. Богуш [и др.]. – Минск, 2024. – С. 118–125. |
Abstract: | В современном динамичном цифровом ландшафте киберугрозы становятся все более сложными и распространенными, представляя вызов для традиционных методов обеспечения кибербезопасности. Исследование обсуждает важную роль машинного обучения в контексте укрепления цифровой обороны. Машинное обучение, как часть искусственного интеллекта, выделяется как мощный инструмент в противостоянии киберпротивникам. Документ подчеркивает, как методы машинного обучения могут существенно улучшить эффективность обнаружения угроз, реагирования на инциденты и адаптации систем безопасности. Приведены конкретные примеры применения, такие как обнаружение аномалий, анализ поведения и прогнозирование угроз, что демонстрирует взаимовыгодное взаимодействие между машинным обучением и областью кибербезопасности. Путем использования машинного обучения организации могут опережать возможные угрозы, более эффективно адаптироваться и укреплять свою защиту в условиях постоянно развивающегося цифрового мира. |
Alternative abstract: | In the modern dynamic digital landscape, cyber threats are becoming increasingly sophisticated and prevalent, posing a challenge to traditional cybersecurity methods. This research document, focusing on the strengthening of digital defense, delves into the pivotal role of machine learning. Machine learning, a subset of artificial intelligence, is identified as a powerful tool in combating cyber adversaries. The study discusses how machine learning methods can significantly enhance the efficiency of threat detection, incident response, and the adaptability of security systems. Concrete applications are highlighted, such as anomaly detection, behavioral analysis, and threat forecasting, illustrating the symbiotic relationship between machine learning and cybersecurity. By leveraging machine learning, organizations can stay ahead of emerging threats, adapt more effectively, and fortify their defense in the ever-evolving digital era. |
URI: | https://libeldoc.bsuir.by/handle/123456789/54755 |
Appears in Collections: | BIG DATA and Advanced Analytics = BIG DATA и анализ высокого уровня : сборник научных статей : в 2 ч. (2024) |
File | Description | Size | Format | |
---|---|---|---|---|
Golovanov_Optimizaciya.pdf | 355.26 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.