Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/59029
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSaipidinov, Zh.-
dc.contributor.authorIsaev, R.-
dc.contributor.authorGimaletdinova, G.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2025-02-07T08:02:44Z-
dc.date.available2025-02-07T08:02:44Z-
dc.date.issued2024-
dc.identifier.citationSaipidinov, Zh. Forecasting energy consumption using machine learning: a case study of Kyrgyzstan using socioeconomic data / Zh. Saipidinov, R. Isaev, G. Gimaletdinova // Информационные радиосистемы и радиотехнологии-2024 : материалы открытой республиканской научно-практической интернет-конференции, Минск, 21–22 ноября 2024 г. / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: В. А. Богуш [и др.]. – Минск, 2024. – С. 285–288.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/59029-
dc.description.abstractAs global energy demands soar, understanding and accurately forecasting energy consumption becomes crucial for both economic stability and sustainable development. This paper explores the application of machine learning techniques to predict energy consumption, using the "World Energy Consumption" dataset from Kaggle. Focusing on Kyrgyzstan as a case study, we investigate how factors such as energy per capita, population, and GDP influence energy demand. Employing a regression model, we evaluate the effectiveness of socioeconomic indicators in predicting energy needs. Results demonstrate the potential for these methods to contribute to energy management strategies, though limitations point toward the need for more complex models and broader datasets.en_US
dc.language.isoenen_US
dc.publisherБГУИРen_US
dc.subjectматериалы конференцийen_US
dc.subjectenergy consumption forecastingen_US
dc.subjectmachine learningen_US
dc.subjectregression analysisen_US
dc.subjectsocioeconomic factorsen_US
dc.subjectlinear regressionen_US
dc.subjectprimary energy consumptionen_US
dc.subjecttime-series analysisen_US
dc.titleForecasting energy consumption using machine learning: a case study of Kyrgyzstan using socioeconomic dataen_US
dc.typeArticleen_US
Appears in Collections:Информационные радиосистемы и радиотехнологии (2024)

Files in This Item:
File Description SizeFormat 
Saipidinov_Forecasting.pdf417.54 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.