Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/59029
Title: Forecasting energy consumption using machine learning: a case study of Kyrgyzstan using socioeconomic data
Authors: Saipidinov, Zh.
Isaev, R.
Gimaletdinova, G.
Keywords: материалы конференций;energy consumption forecasting;machine learning;regression analysis;socioeconomic factors;linear regression;primary energy consumption;time-series analysis
Issue Date: 2024
Publisher: БГУИР
Citation: Saipidinov, Zh. Forecasting energy consumption using machine learning: a case study of Kyrgyzstan using socioeconomic data / Zh. Saipidinov, R. Isaev, G. Gimaletdinova // Информационные радиосистемы и радиотехнологии-2024 : материалы открытой республиканской научно-практической интернет-конференции, Минск, 21–22 ноября 2024 г. / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: В. А. Богуш [и др.]. – Минск, 2024. – С. 285–288.
Abstract: As global energy demands soar, understanding and accurately forecasting energy consumption becomes crucial for both economic stability and sustainable development. This paper explores the application of machine learning techniques to predict energy consumption, using the "World Energy Consumption" dataset from Kaggle. Focusing on Kyrgyzstan as a case study, we investigate how factors such as energy per capita, population, and GDP influence energy demand. Employing a regression model, we evaluate the effectiveness of socioeconomic indicators in predicting energy needs. Results demonstrate the potential for these methods to contribute to energy management strategies, though limitations point toward the need for more complex models and broader datasets.
URI: https://libeldoc.bsuir.by/handle/123456789/59029
Appears in Collections:Информационные радиосистемы и радиотехнологии (2024)

Files in This Item:
File Description SizeFormat 
Saipidinov_Forecasting.pdf417.54 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.