Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/59680
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYi Tang-
dc.coverage.spatialМинскen_US
dc.date.accessioned2025-05-02T08:31:06Z-
dc.date.available2025-05-02T08:31:06Z-
dc.date.issued2025-
dc.identifier.citationYi Tang. Analysis and review of multimodal trajectory prediction methods in complex dynamic scenes: evolution from classical models to deep learning / Yi Tang // Big Data и анализ высокого уровня = Big Data and Advanced Analytics : сборник научных статей XI Международной научно-практической конференции, Республика Беларусь, Минск, 23–24 апреля 2025 года / Белорусский государственный университет информатики и радиоэлектроники [и др.] ; редкол.: В. А. Богуш [и др.]. – Минск, 2025. – С. 108–116.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/59680-
dc.description.abstractThis article provides a systematic review of the mainstream algorithms and methods in the field of trajectory prediction for autonomous vehicles, categorizing them into four major approaches: traditional statistical methods, machine learning-based methods, deep learning-based methods, and hybrid models. Through a comprehensive analysis of the principles, strengths, weaknesses, and relevant literature of each approach, this study offers a detailed comparison of their performance characteristics and delves into their respective application scenarios. Furthermore, based on the current state of research, the article explores future directions for trajectory prediction technologies and proposes corresponding research recommendations.en_US
dc.language.isoenen_US
dc.publisherБГУИРen_US
dc.subjectматериалы конференцийen_US
dc.subjectTrajectory Predictionen_US
dc.subjectAutonomous drivingen_US
dc.subjectMachine learningen_US
dc.titleAnalysis and review of multimodal trajectory prediction methods in complex dynamic scenes: evolution from classical models to deep learningen_US
dc.typeArticleen_US
Appears in Collections:BIG DATA and Advanced Analytics = BIG DATA и анализ высокого уровня : сборник научных статей (2025)

Files in This Item:
File Description SizeFormat 
Tang_Analysis.pdf278.8 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.