Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/59680
Title: Analysis and review of multimodal trajectory prediction methods in complex dynamic scenes: evolution from classical models to deep learning
Authors: Yi Tang
Keywords: материалы конференций;Trajectory Prediction;Autonomous driving;Machine learning
Issue Date: 2025
Publisher: БГУИР
Citation: Yi Tang. Analysis and review of multimodal trajectory prediction methods in complex dynamic scenes: evolution from classical models to deep learning / Yi Tang // Big Data и анализ высокого уровня = Big Data and Advanced Analytics : сборник научных статей XI Международной научно-практической конференции, Республика Беларусь, Минск, 23–24 апреля 2025 года / Белорусский государственный университет информатики и радиоэлектроники [и др.] ; редкол.: В. А. Богуш [и др.]. – Минск, 2025. – С. 108–116.
Abstract: This article provides a systematic review of the mainstream algorithms and methods in the field of trajectory prediction for autonomous vehicles, categorizing them into four major approaches: traditional statistical methods, machine learning-based methods, deep learning-based methods, and hybrid models. Through a comprehensive analysis of the principles, strengths, weaknesses, and relevant literature of each approach, this study offers a detailed comparison of their performance characteristics and delves into their respective application scenarios. Furthermore, based on the current state of research, the article explores future directions for trajectory prediction technologies and proposes corresponding research recommendations.
URI: https://libeldoc.bsuir.by/handle/123456789/59680
Appears in Collections:BIG DATA and Advanced Analytics = BIG DATA и анализ высокого уровня : сборник научных статей (2025)

Files in This Item:
File Description SizeFormat 
Tang_Analysis.pdf278.8 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.