Title: | Analysis and review of multimodal trajectory prediction methods in complex dynamic scenes: evolution from classical models to deep learning |
Authors: | Yi Tang |
Keywords: | материалы конференций;Trajectory Prediction;Autonomous driving;Machine learning |
Issue Date: | 2025 |
Publisher: | БГУИР |
Citation: | Yi Tang. Analysis and review of multimodal trajectory prediction methods in complex dynamic scenes: evolution from classical models to deep learning / Yi Tang // Big Data и анализ высокого уровня = Big Data and Advanced Analytics : сборник научных статей XI Международной научно-практической конференции, Республика Беларусь, Минск, 23–24 апреля 2025 года / Белорусский государственный университет информатики и радиоэлектроники [и др.] ; редкол.: В. А. Богуш [и др.]. – Минск, 2025. – С. 108–116. |
Abstract: | This article provides a systematic review of the mainstream algorithms and methods in the field of
trajectory prediction for autonomous vehicles, categorizing them into four major approaches: traditional statistical
methods, machine learning-based methods, deep learning-based methods, and hybrid models. Through a
comprehensive analysis of the principles, strengths, weaknesses, and relevant literature of each approach, this study
offers a detailed comparison of their performance characteristics and delves into their respective application scenarios.
Furthermore, based on the current state of research, the article explores future directions for trajectory prediction
technologies and proposes corresponding research recommendations. |
URI: | https://libeldoc.bsuir.by/handle/123456789/59680 |
Appears in Collections: | BIG DATA and Advanced Analytics = BIG DATA и анализ высокого уровня : сборник научных статей (2025)
|