Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/60668
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, H.-
dc.contributor.authorTsviatkou, V. Yu.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2025-07-02T10:17:09Z-
dc.date.available2025-07-02T10:17:09Z-
dc.date.issued2025-
dc.identifier.citationLi, H. Application of a nonparametric gait model and feature generation based on insole data / H. Li, V. Yu. Tsviatkou // Технологии передачи и обработки информации : материалы Международного научно-технического семинара, Минск, апрель 2025 г. / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: В. Ю. Цветков [и др.]. – Минск, 2025. – С. 126–129.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/60668-
dc.description.abstractGait and balance disorders pose significant risks of injury and negatively impact quality of life, especially among the elderly and individuals with neurological conditions. In this work, a novel feature generation method based on a nonparametric gait model (NPWM) for plantar pressure data is proposed for early fall risk assessment. Unlike traditional gait analysis methods that rely on fixed parameters or predefined models, the proposed approach directly extracts spatiotemporal features from real world data collected by wearable plantar pressure sensors. These features include raw spatial distributions, gait temporal characteristics, balance stability metrics, energy expenditure features, and informative feature ratios. Experimental results demonstrate that the proposed method achieves a fall risk prediction accuracy of 0,9, offering significant advantages over conventional clinical assessment methods.en_US
dc.language.isoenen_US
dc.publisherБГУИРen_US
dc.subjectматериалы конференцийen_US
dc.subjectfeature generationen_US
dc.subjectkinesicsen_US
dc.subjectBerg balance scaleen_US
dc.titleApplication of a nonparametric gait model and feature generation based on insole dataen_US
dc.typeArticleen_US
Appears in Collections:Технологии передачи и обработки информации : материалы Международного научно-технического семинара (2025)

Files in This Item:
File Description SizeFormat 
Li_Application.pdf592.32 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.