DC Field | Value | Language |
dc.contributor.author | Wang, X. | - |
dc.contributor.author | Prudnik, A. M. | - |
dc.coverage.spatial | Минск | en_US |
dc.date.accessioned | 2025-07-10T08:54:45Z | - |
dc.date.available | 2025-07-10T08:54:45Z | - |
dc.date.issued | 2025 | - |
dc.identifier.citation | Wang, X. Conceptual framework and theoretical challenges in unsupervised anomaly detection for network traffic data / X. Wang, A. M. Prudnik // Технологии передачи и обработки информации : материалы Международного научно-технического семинара, Минск, апрель 2025 г. / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: В. Ю. Цветков [и др.]. – Минск, 2025. – С. 165–167. | en_US |
dc.identifier.uri | https://libeldoc.bsuir.by/handle/123456789/60698 | - |
dc.description.abstract | This paper outlines the initial design considerations for a system aimed at processing and analyzing network traffic data to detect anomalies using machine learning. The study explores anticipated challenges in data preprocessing, scalability, and algorithm selection, emphasizing the potential of unsupervised learning methods to identify unusual patterns in network traffic. The proposed approach serves as a foundation for future development of anomaly detection systems. | en_US |
dc.language.iso | en | en_US |
dc.publisher | БГУИР | en_US |
dc.subject | материалы конференций | en_US |
dc.subject | network traffic processing | en_US |
dc.subject | anomaly detection | en_US |
dc.subject | machine learning | en_US |
dc.subject | system design challenges | en_US |
dc.title | Conceptual framework and theoretical challenges in unsupervised anomaly detection for network traffic data | en_US |
dc.type | Article | en_US |
Appears in Collections: | Технологии передачи и обработки информации : материалы Международного научно-технического семинара (2025)
|