Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/60698
Title: Conceptual framework and theoretical challenges in unsupervised anomaly detection for network traffic data
Authors: Wang, X.
Prudnik, A. M.
Keywords: материалы конференций;network traffic processing;anomaly detection;machine learning;system design challenges
Issue Date: 2025
Publisher: БГУИР
Citation: Wang, X. Conceptual framework and theoretical challenges in unsupervised anomaly detection for network traffic data / X. Wang, A. M. Prudnik // Технологии передачи и обработки информации : материалы Международного научно-технического семинара, Минск, апрель 2025 г. / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: В. Ю. Цветков [и др.]. – Минск, 2025. – С. 165–167.
Abstract: This paper outlines the initial design considerations for a system aimed at processing and analyzing network traffic data to detect anomalies using machine learning. The study explores anticipated challenges in data preprocessing, scalability, and algorithm selection, emphasizing the potential of unsupervised learning methods to identify unusual patterns in network traffic. The proposed approach serves as a foundation for future development of anomaly detection systems.
URI: https://libeldoc.bsuir.by/handle/123456789/60698
Appears in Collections:Технологии передачи и обработки информации : материалы Международного научно-технического семинара (2025)

Files in This Item:
File Description SizeFormat 
Wang_Conceptual.pdf384.08 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.