Title: | Artificial intelligence as a modern tool for enhancing recommender systems |
Authors: | Klimenko, I. V. |
Keywords: | материалы конференций;recommender systems;machine learning;deep learning;personalisation;user behavior analysis;e-commerce;streaming services;social media;reinforcement learning |
Issue Date: | 2025 |
Publisher: | БГУИР |
Citation: | Klimenko, I. V. Artificial intelligence as a modern tool for enhancing recommender systems / I. V. Klimenko // Актуальные вопросы экономики и информационных технологий : сборник материалов докладов 61-й научной конференции аспирантов, магистрантов и студентов БГУИР, Минск, 20–25 апреля 2025 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2025. – С. 674–677. |
Abstract: | This article explores modern recommender systems built upon Artificial Intelligence, Machine Learning, and Deep Learning
technologies. The author discusses how these methods are employed by digital platforms to enhance user experiences and improve business outcomes. The pivotal role of personalisation, driven by extensive user behaviour analysis, is underscored, and techniques to process large,
diverse datasets are examined. Special attention is given to how Deep Learning approaches and Reinforcement Learning enable the dynamic
adaptation of recommendations. Additionally, the article addresses ethical considerations such as the formation of «filter bubbles» and the
need for algorithmic transparency. Conclusively, it highlights that AI-powered solutions have become integral to recommender systems,
offering competitive advantages and meeting user needs in an era of information overload. |
URI: | https://libeldoc.bsuir.by/handle/123456789/60977 |
Appears in Collections: | Актуальные вопросы экономики и информационных технологий : материалы 61-й научной конференции аспирантов, магистрантов и студентов (2025)
|