DC Field | Value | Language |
dc.contributor.author | Feng Ling | - |
dc.contributor.author | Yan Zhang | - |
dc.coverage.spatial | Минск | en_US |
dc.date.accessioned | 2025-09-08T06:18:25Z | - |
dc.date.available | 2025-09-08T06:18:25Z | - |
dc.date.issued | 2025 | - |
dc.identifier.citation | Feng Ling. Domain adaptive dehaing based on physical properties / Feng Ling, Yan Zhang // Информационная безопасность : сборник материалов 61-й научной конференции аспирантов, магистрантов и студентов БГУИР, Минск, 21–25 апреля 2025 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2025. – С. 132–133. | en_US |
dc.identifier.uri | https://libeldoc.bsuir.by/handle/123456789/61467 | - |
dc.description.abstract | Deep learning-based single image dehazing has advanced significantly, yet models trained on synthetic data struggle in real-world
scenarios. Tо address this cross-domain gap, we propose a Synthetic-to-Real Dehazing framework comprising two key components: 1) A domain
adaptation network that generates Synthetic-to-Real hazy images by learning real haze characteristics through depth-transmission map
correlations, and 2) A physics-guided dehazing network based on the atmospheric scattering model. Crucially, our framework requires no real
hazy data during dehazing training. Experiments demonstrate our framework's superior cross-domain dehazing generalization. | en_US |
dc.language.iso | en | en_US |
dc.publisher | БГУИР | en_US |
dc.subject | материалы конференций | en_US |
dc.subject | Image enhancement | en_US |
dc.subject | Domain adaptation | en_US |
dc.subject | Image restoration | en_US |
dc.title | Domain adaptive dehaing based on physical properties | en_US |
Appears in Collections: | Информационная безопасность : материалы 61-й научной конференции аспирантов, магистрантов и студентов (2025)
|