Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/61494
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, J. H.-
dc.contributor.authorXiong, S.-
dc.contributor.authorDang, Z. F.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2025-09-09T09:01:40Z-
dc.date.available2025-09-09T09:01:40Z-
dc.date.issued2025-
dc.identifier.citationLiu, J. H. Deep learning based russian handwriten recognition / J. H. Liu, S. Xiong, Z. F. Dang // Информационная безопасность : сборник материалов 61-й научной конференции аспирантов, магистрантов и студентов БГУИР, Минск, 21–25 апреля 2025 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2025. – С. 84–87.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/61494-
dc.description.abstractThis paper presents a Russian handwriting recognition algorithm based on deep learning. The algorithm combines improved VGG network feature extraction capabilities with LSTM time modeling capabilities and introduces data enhancement and optimizer tuning strategies. Experimental results show that the proposed algorithm is significantly superior to the existing methods in recognition accuracy and training efficiency.en_US
dc.language.isoenen_US
dc.publisherБГУИРen_US
dc.subjectматериалы конференцийen_US
dc.subjectrussian handwriting recognitionen_US
dc.subjectdeep learningen_US
dc.subjectVGG networken_US
dc.titleDeep learning based russian handwriten recognitionen_US
Appears in Collections:Информационная безопасность : материалы 61-й научной конференции аспирантов, магистрантов и студентов (2025)

Files in This Item:
File Description SizeFormat 
Liu_Deep_Learning.pdf455.29 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.