Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/61494
Title: Deep learning based russian handwriten recognition
Authors: Liu, J. H.
Xiong, S.
Dang, Z. F.
Keywords: материалы конференций;russian handwriting recognition;deep learning;VGG network
Issue Date: 2025
Publisher: БГУИР
Citation: Liu, J. H. Deep learning based russian handwriten recognition / J. H. Liu, S. Xiong, Z. F. Dang // Информационная безопасность : сборник материалов 61-й научной конференции аспирантов, магистрантов и студентов БГУИР, Минск, 21–25 апреля 2025 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2025. – С. 84–87.
Abstract: This paper presents a Russian handwriting recognition algorithm based on deep learning. The algorithm combines improved VGG network feature extraction capabilities with LSTM time modeling capabilities and introduces data enhancement and optimizer tuning strategies. Experimental results show that the proposed algorithm is significantly superior to the existing methods in recognition accuracy and training efficiency.
URI: https://libeldoc.bsuir.by/handle/123456789/61494
Appears in Collections:Информационная безопасность : материалы 61-й научной конференции аспирантов, магистрантов и студентов (2025)

Files in This Item:
File Description SizeFormat 
Liu_Deep_Learning.pdf455.29 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.