https://libeldoc.bsuir.by/handle/123456789/61494
Title: | Deep learning based russian handwriten recognition |
Authors: | Liu, J. H. Xiong, S. Dang, Z. F. |
Keywords: | материалы конференций;russian handwriting recognition;deep learning;VGG network |
Issue Date: | 2025 |
Publisher: | БГУИР |
Citation: | Liu, J. H. Deep learning based russian handwriten recognition / J. H. Liu, S. Xiong, Z. F. Dang // Информационная безопасность : сборник материалов 61-й научной конференции аспирантов, магистрантов и студентов БГУИР, Минск, 21–25 апреля 2025 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2025. – С. 84–87. |
Abstract: | This paper presents a Russian handwriting recognition algorithm based on deep learning. The algorithm combines improved VGG network feature extraction capabilities with LSTM time modeling capabilities and introduces data enhancement and optimizer tuning strategies. Experimental results show that the proposed algorithm is significantly superior to the existing methods in recognition accuracy and training efficiency. |
URI: | https://libeldoc.bsuir.by/handle/123456789/61494 |
Appears in Collections: | Информационная безопасность : материалы 61-й научной конференции аспирантов, магистрантов и студентов (2025) |
File | Description | Size | Format | |
---|---|---|---|---|
Liu_Deep_Learning.pdf | 455.29 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.