| DC Field | Value | Language |
| dc.contributor.author | Tang Yi | - |
| dc.contributor.author | German, Yu. O. | - |
| dc.coverage.spatial | Минск | en_US |
| dc.date.accessioned | 2025-12-01T07:41:01Z | - |
| dc.date.available | 2025-12-01T07:41:01Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.citation | Tang Yi. An improved q-learning algorithm with optimized initialization and annealed boltzmann exploration / Tang Yi, Yu. O. German // Информационные технологии и системы 2025 (ИТС 2025) : материалы международной научной конференции, Минск, 19 ноября 2025 / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Л. Ю. Шилин [и др.]. – Минск, 2025. – С. 265–266. | en_US |
| dc.identifier.uri | https://libeldoc.bsuir.by/handle/123456789/62200 | - |
| dc.description.abstract | This paper proposes a hybrid enhancement method for Q-learning that combines direction-sensitive Q-table initialization with annealing-based Boltzmann exploration. Initialization leverages geometric priors to bias actions
toward the target without leaking obstacle information; the annealing-based Boltzmann method achieves a smooth
transition from extensive exploration to exploitation. By leveraging the symmetry of isometric states and an
adaptive exploration strategy, the improved Q-learning algorithm achieves faster convergence in discrete action
environments. | en_US |
| dc.language.iso | ru | en_US |
| dc.publisher | БГУИР | en_US |
| dc.subject | материалы конференций | en_US |
| dc.subject | enhancement method | en_US |
| dc.subject | Q-learning | en_US |
| dc.subject | geometric priors | en_US |
| dc.title | An improved q-learning algorithm with optimized initialization and annealed boltzmann exploration | en_US |
| dc.type | Article | en_US |
| Appears in Collections: | ИТС 2025
|