Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/62200
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTang Yi-
dc.contributor.authorGerman, Yu. O.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2025-12-01T07:41:01Z-
dc.date.available2025-12-01T07:41:01Z-
dc.date.issued2025-
dc.identifier.citationTang Yi. An improved q-learning algorithm with optimized initialization and annealed boltzmann exploration / Tang Yi, Yu. O. German // Информационные технологии и системы 2025 (ИТС 2025) : материалы международной научной конференции, Минск, 19 ноября 2025 / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Л. Ю. Шилин [и др.]. – Минск, 2025. – С. 265–266.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/62200-
dc.description.abstractThis paper proposes a hybrid enhancement method for Q-learning that combines direction-sensitive Q-table initialization with annealing-based Boltzmann exploration. Initialization leverages geometric priors to bias actions toward the target without leaking obstacle information; the annealing-based Boltzmann method achieves a smooth transition from extensive exploration to exploitation. By leveraging the symmetry of isometric states and an adaptive exploration strategy, the improved Q-learning algorithm achieves faster convergence in discrete action environments.en_US
dc.language.isoruen_US
dc.publisherБГУИРen_US
dc.subjectматериалы конференцийen_US
dc.subjectenhancement methoden_US
dc.subjectQ-learningen_US
dc.subjectgeometric priorsen_US
dc.titleAn improved q-learning algorithm with optimized initialization and annealed boltzmann explorationen_US
dc.typeArticleen_US
Appears in Collections:ИТС 2025

Files in This Item:
File Description SizeFormat 
Tang_Yi_An_improved.pdf1.06 MBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.