| DC Field | Value | Language |
| dc.contributor.author | Orazdurdyyeva, G. O. | - |
| dc.contributor.author | Bekiyeva, M. B. | - |
| dc.contributor.author | Bekiyev, A. R. | - |
| dc.coverage.spatial | Минск | en_US |
| dc.date.accessioned | 2025-12-01T08:33:12Z | - |
| dc.date.available | 2025-12-01T08:33:12Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.citation | Orazdurdyyeva, G. O. Statistical evaluation of network traffic variations using hypothesis testing methods / G. O. Orazdurdyyeva, M. B. Bekiyeva, A. R. Bekiyev // Информационные технологии и системы 2025 (ИТС 2025) : материалы международной научной конференции, Минск, 19 ноября 2025 / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Л. Ю. Шилин [и др.]. – Минск, 2025. – С. 263–264. | en_US |
| dc.identifier.uri | https://libeldoc.bsuir.by/handle/123456789/62211 | - |
| dc.description.abstract | This paper presents a statistical approach for detecting and analyzing variations in network traffic using hypothesis
testing methods such as the z-test, t-test, and chi-square test. The study aims to determine whether changes in
traffic behavior are statistically significant and could indicate potential cyberattacks or anomalies. The proposed
approach provides an interpretable, mathematically grounded framework fo r network monitoring without relying
on complex machine learning algorithms. Experimental results demonstrate that statistical hypothesis testing can
effectively differentiate normal traffic from abnormal or attack traffic, thereby contributing to improved cybersecurity
analysis. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | БГУИР | en_US |
| dc.subject | материалы конференций | en_US |
| dc.subject | network traffic | en_US |
| dc.subject | z-test | en_US |
| dc.subject | t-test | en_US |
| dc.subject | chi-square test | en_US |
| dc.subject | cyberattacks | en_US |
| dc.subject | anomalies | en_US |
| dc.title | Statistical evaluation of network traffic variations using hypothesis testing methods | en_US |
| dc.type | Article | en_US |
| Appears in Collections: | ИТС 2025
|