Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/62211
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOrazdurdyyeva, G. O.-
dc.contributor.authorBekiyeva, M. B.-
dc.contributor.authorBekiyev, A. R.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2025-12-01T08:33:12Z-
dc.date.available2025-12-01T08:33:12Z-
dc.date.issued2025-
dc.identifier.citationOrazdurdyyeva, G. O. Statistical evaluation of network traffic variations using hypothesis testing methods / G. O. Orazdurdyyeva, M. B. Bekiyeva, A. R. Bekiyev // Информационные технологии и системы 2025 (ИТС 2025) : материалы международной научной конференции, Минск, 19 ноября 2025 / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Л. Ю. Шилин [и др.]. – Минск, 2025. – С. 263–264.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/62211-
dc.description.abstractThis paper presents a statistical approach for detecting and analyzing variations in network traffic using hypothesis testing methods such as the z-test, t-test, and chi-square test. The study aims to determine whether changes in traffic behavior are statistically significant and could indicate potential cyberattacks or anomalies. The proposed approach provides an interpretable, mathematically grounded framework fo r network monitoring without relying on complex machine learning algorithms. Experimental results demonstrate that statistical hypothesis testing can effectively differentiate normal traffic from abnormal or attack traffic, thereby contributing to improved cybersecurity analysis.en_US
dc.language.isoenen_US
dc.publisherБГУИРen_US
dc.subjectматериалы конференцийen_US
dc.subjectnetwork trafficen_US
dc.subjectz-testen_US
dc.subjectt-testen_US
dc.subjectchi-square testen_US
dc.subjectcyberattacksen_US
dc.subjectanomaliesen_US
dc.titleStatistical evaluation of network traffic variations using hypothesis testing methodsen_US
dc.typeArticleen_US
Appears in Collections:ИТС 2025

Files in This Item:
File Description SizeFormat 
Orazdurdyyeva_Statistical.pdf3.19 MBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.