Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/62250
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang Jing-
dc.contributor.authorGerman, Yu.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2025-12-02T07:57:53Z-
dc.date.available2025-12-02T07:57:53Z-
dc.date.issued2025-
dc.identifier.citationWang Jing. Statistical analysis of pixel distribution for image distortion detection / Wang Jing, Yu. German // Информационные технологии и системы 2025 (ИТС 2025) : материалы международной научной конференции, Минск, 19 ноября 2025 / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Л. Ю. Шилин [и др.]. – Минск, 2025. – С. 259–260.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/62250-
dc.description.abstractThis study investigates the use of statistical methods to detect image distortions by analyzing pixel distributions. Using Kolmogorov-Smirnov (KS) tests and moment-based comparisons across varying sample sizes, we compare normal and distorted images to determine the minimal sample size required for reliable discrimination. Our findings demonstrate that statistical pixel analysis provides a computationally efficient alternative to traditional image quality metrics, particularly suitable for real-time applications where processing resources are limited.en_US
dc.language.isoruen_US
dc.publisherБГУИРen_US
dc.subjectматериалы конференцийen_US
dc.subjectstatistical methodsen_US
dc.subjectUsing Kolmogorov-Smirnoven_US
dc.subjectdistorted imagesen_US
dc.titleStatistical analysis of pixel distribution for image distortion detectionen_US
dc.typeArticleen_US
Appears in Collections:ИТС 2025

Files in This Item:
File Description SizeFormat 
Wang_Jing_Statistical.pdf106.43 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.