| DC Field | Value | Language |
| dc.contributor.author | Wang Jing | - |
| dc.contributor.author | German, Yu. | - |
| dc.coverage.spatial | Минск | en_US |
| dc.date.accessioned | 2025-12-02T07:57:53Z | - |
| dc.date.available | 2025-12-02T07:57:53Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.citation | Wang Jing. Statistical analysis of pixel distribution for image distortion detection / Wang Jing, Yu. German // Информационные технологии и системы 2025 (ИТС 2025) : материалы международной научной конференции, Минск, 19 ноября 2025 / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Л. Ю. Шилин [и др.]. – Минск, 2025. – С. 259–260. | en_US |
| dc.identifier.uri | https://libeldoc.bsuir.by/handle/123456789/62250 | - |
| dc.description.abstract | This study investigates the use of statistical methods to detect image distortions by analyzing pixel distributions.
Using Kolmogorov-Smirnov (KS) tests and moment-based comparisons across varying sample sizes, we compare
normal and distorted images to determine the minimal sample size required for reliable discrimination. Our findings
demonstrate that statistical pixel analysis provides a computationally efficient alternative to traditional image
quality metrics, particularly suitable for real-time applications where processing resources are limited. | en_US |
| dc.language.iso | ru | en_US |
| dc.publisher | БГУИР | en_US |
| dc.subject | материалы конференций | en_US |
| dc.subject | statistical methods | en_US |
| dc.subject | Using Kolmogorov-Smirnov | en_US |
| dc.subject | distorted images | en_US |
| dc.title | Statistical analysis of pixel distribution for image distortion detection | en_US |
| dc.type | Article | en_US |
| Appears in Collections: | ИТС 2025
|