Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/38988
Title: On the Bayesian multidimensional-matrix polynomial empirical regression
Authors: Mukha, V. S.
Malikova, I. G.
Keywords: материалы конференций;regression function;parameters estimations;maximum likelihood
Issue Date: 2020
Publisher: Minzu University
Citation: Mukha, V. S. On the Bayesian multidimensional-matrix polynomial empirical regression / Vladimir S. Mukha, Irina G. Malikova // Scientific research of the SCO countries: synergy and integration: мaterials of the International Conference, Beijing, May 14, 2020. – China, 2020. – P. 159-165. - DOI: https://doi.org/10.34660/INF.2020.28.63870.
Abstract: The problem of the parameters estima-tion for the polynomial in the input variables regression function is formu-lated and solved. The input and output variables of the regression function are multidimensional-matrices. The pa-rameters of the regression function are assumed to be random independent multidimensional matrices with Gauss-ian distribution and known mean value and dispersion matrices. The solution to this problem is a multidimensional-matrix system of the linear algebraic equations in multidimensional-matrix unknowns – function regression pa-rameters. We have considered particu-lar case of quadratic regression func-tion, for which we have obtained for-mulas for parameters calculation. The computer simulation of the quadratic regression functions is performed for the two-dimensional matrix input and output variables.
URI: https://libeldoc.bsuir.by/handle/123456789/38988
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
Mukha_On.pdf676.8 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.