Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/51990
Title: Human physical activity recognition algorithm based on smartphone sensor data and convolutional neural network
Authors: Wan, Z. W.
Keywords: материалы конференций;Human activity recognition;machine learning;convolutional neural network
Issue Date: 2023
Publisher: БГУИР
Citation: Wan, Z. W. Human physical activity recognition algorithm based on smartphone sensor data and convolutional neural network / Z. W. Wan // Информационная безопасность : сборник материалов 59-й научной конференции аспирантов, магистрантов и студентов БГУИР, Минск, 17–21 апреля 2023 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2023. – С. 176–177.
Abstract: Human activity recognition (HAR) is a prominent application of advanced Machine Learning (ML) and Artificial Intelligence (AI) techniques that utilizes computer vision to understand the semantic meanings of heterogeneous human actions. This paper describes a supervised learning method that can distinguish human actions based on data collected from practical human movements. This study proposes a HAR classification model based on a Convolutional Neural Network (CNN) and uses the collected human action signals. The model was tested on the WISDM dataset, which resulted in a 92 % classification accuracy. This approach will help to conduct further researches on the recognition of human activities based on their biomedical signals.
URI: https://libeldoc.bsuir.by/handle/123456789/51990
Appears in Collections:Информационная безопасность : материалы 59-й научной конференции аспирантов, магистрантов и студентов (2023)

Files in This Item:
File Description SizeFormat 
Wan_Human_physical.pdf187.91 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.