Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/51994
Title: Human physical activity recognition algorithm based on smartphone data convolutional neural network and long short time memory
Authors: Yang, Z. X.
Chen, Z. Y.
H., Li
Keywords: материалы конференций;HAR;CNN;LSTM;Acceleration sensor
Issue Date: 2023
Publisher: БГУИР
Citation: Yang, Z. X. Human physical activity recognition algorithm based on smartphone data convolutional neural network and long short time memory / Z. X. Yang, Z. Y. Chen, H. Li // Информационная безопасность : сборник материалов 59-й научной конференции аспирантов, магистрантов и студентов БГУИР, Минск, 17–21 апреля 2023 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2023. – С. 181–183.
Abstract: A deep learning framework for activity recognition based on smartphone acceleration sensor data, convolutional neural network (CNN) and long short-term memory (LSTM) is proposed in the paper. The proposed framework aims to improve the accuracy of human activity recognition (HAR) by combining the strengths of CNN and LSTM. The CNN is used to extract features from the acceleration data and the LSTM is used to model the temporal dependencies of the features. The proposed framework is evaluated on the publicly available dataset, it includes 6 different actions: walking, walking upstairs, walking downstairs, sitting, standing, laying. The physical activity recognition accuracy has reached 94 %.
URI: https://libeldoc.bsuir.by/handle/123456789/51994
Appears in Collections:Информационная безопасность : материалы 59-й научной конференции аспирантов, магистрантов и студентов (2023)

Files in This Item:
File Description SizeFormat 
Yang_Human_physical.pdf234.46 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.