Skip navigation
Please use this identifier to cite or link to this item:
Title: Upconversion Luminescence fromSol-Gel-Derived Erbium- and Ytterbium-Doped BaTiO3 FilmStructures and the Target Form
Authors: Gaponenko, N. V.
Staskov, N. I.
Sudnik, L. V.
Vityaz, P. A.
Luchanok, A. R.
Karnilava, Y. D.
Lashkovskaya, E. I.
Stepikhova, M. V.
Yablonskiy, A. N.
Zhivulko, V. D.
Mudryi, A. V.
Martynov, I. L.
Chistyakov, A. A.
Kargin, N. I.
Labunov, V. A.
Radyush, Y. V.
Chubenko, E. B.
Timoshenko, V. Yu.
Keywords: публикации ученых;barium titanate;luminescence;refractive index
Issue Date: 2023
Publisher: MDPI AG
Citation: Upconversion Luminescence fromSol-Gel-Derived Erbium- and Ytterbium-Doped BaTiO3 FilmStructures and the Target Form / N. V. Gaponenko [et al.] // Photonics. – 2023. – V. 10. – P. 1–12.
Abstract: Sol-gel technology has attracted attention in the fabrication of diverse luminescent materials and thin film structures, with forms that range from powders to microcavities. The optical properties of sol-gel-derived structures depend on the sol composition, deposition, and heat treatment conditions, as well as on the film thicknesses and other factors. Investigations on the upconversion luminescence of lanthanides in film structures and materials are also ongoing. In this study, we synthesized three different types of materials and film structures using the same sol, which corresponded to a Ba0.76Er0.04Yb0.20TiO3 xerogel, as follows: (a) the target form, which used the explosive compaction method for sol-gel-derived powder; (b) single-layer spin-on xerogel films annealed at 450 and 800 oC; and (c) microcavities with an undoped SiO2/BaTiO3 Bragg reflector surrounding a Ba0.76Er0.04Yb0.20TiO3 active layer. The BaTiO3:(Er,Yb)/SiO2 microcavity exhibited an enhancement of the upconversion luminescence when compared to the BaTiO3:(Er,Yb) double-layer film fabricated directly on a crystalline silicon substrate. The reflection spectra of the BaTiO3:(Er, Yb)/SiO2 microcavity annealed at 800 oC demonstrated a deviation of the maxima of the reflection within 15% for temperature measurements ranging from 26 to 120 oC. From the analyses of the transmission and reflection spectra, the optical band gap for the indirect optical transition in the single layer of the BaTiO3:(Er,Yb) spin-on film annealed at 450 oC was estimated to be 3.82 eV, while that for the film annealed at 800 oC was approximately 3.87 eV. The optical properties, upconversion luminescence, and potential applications of the BaTiO3:(Er,Yb) sol-gel-derived materials and structures are discussed in this paper.
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
Gaponenko_Upconversion.pdf2.45 MBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.