Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/59677
Title: Vehicle and label detection method based on YOLOv11
Authors: Guo Qicheng
Keywords: материалы конференций;оbject detection;vehicles;computer vision
Issue Date: 2025
Publisher: БГУИР
Citation: Guo Qicheng. Vehicle and label detection method based on YOLOv11 / Guo Qicheng // Big Data и анализ высокого уровня = Big Data and Advanced Analytics : сборник научных статей XI Международной научно-практической конференции, Республика Беларусь, Минск, 23–24 апреля 2025 года / Белорусский государственный университет информатики и радиоэлектроники [и др.] ; редкол.: В. А. Богуш [и др.]. – Минск, 2025. – С. 340–342.
Abstract: This paper proposes a vehicle and label detection method based on the YOLOv11 algorithm. By constructing a custom dataset of vehicles and labels, the YOLOv11 model is trained to achieve precise detection of vehicles and their rear-mounted labels. This paper details the dataset creation process, label design, model training procedure, and the selection of optimal training parameters. Finally, the algorithm's performance is evaluated using a validation set. Experimental results demonstrate that the YOLOv11-based vehicle and label detection method exhibits strong performance in terms of accuracy and real-time capability, meeting the requirements of practical applications.
URI: https://libeldoc.bsuir.by/handle/123456789/59677
Appears in Collections:BIG DATA and Advanced Analytics = BIG DATA и анализ высокого уровня : сборник научных статей (2025)

Files in This Item:
File Description SizeFormat 
Guo_Qicheng_Vehicle.pdf549.92 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.