Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/62254
Full metadata record
DC FieldValueLanguage
dc.contributor.authorXia Enduo-
dc.contributor.authorFan Linda-
dc.contributor.authorHe Hongyan-
dc.coverage.spatialМинскen_US
dc.date.accessioned2025-12-02T08:39:02Z-
dc.date.available2025-12-02T08:39:02Z-
dc.date.issued2025-
dc.identifier.citationXia Enduo. Network traffic analysis based on deep learning algorithms / Xia Enduo, Fan Linda, He Hongyan // Информационные технологии и системы 2025 (ИТС 2025) : материалы международной научной конференции, Минск, 19 ноября 2025 / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Л. Ю. Шилин [и др.]. – Минск, 2025. – С. 137–138.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/62254-
dc.description.abstractWe propose a unified anomaly detection framework based on CNN-BiLSTM-Attention to address the low accuracy and high false positive rates of existing traffic-based network anomaly detection methods. The framework represents each network session as a 2D grayscale image, uses 2D-CNN for spatial feature extraction, BiLSTM for long-range temporal dependency capture, and an attention mechanism to highlight the most discriminative features. Experiments on the USTC-TFC-2016 and CICDDoS 2019 datasets show that this framework significantly outperforms state-of the-art methods in accuracy, detection rate, and false positive rate, demonstrating its effectiveness and generalization for network traffic classification.en_US
dc.language.isoruen_US
dc.publisherБГУИРen_US
dc.subjectматериалы конференцийen_US
dc.subjectnetwork anomalyen_US
dc.subjectstate-of the-art methodsen_US
dc.titleNetwork traffic analysis based on deep learning algorithmsen_US
dc.typeArticleen_US
Appears in Collections:ИТС 2025

Files in This Item:
File Description SizeFormat 
Xia_Enduo_Network.pdf3.84 MBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.