Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/62988
Title: Facile synthesis of silicon quantum dots with photoluminescence in the near-ultraviolet to violet region via wet oxidation
Authors: Yizhou He
Qianxi Hao
Chi Zhang
Qi Wang
Wenxin Zeng
Jiamin Yu
Xue Yang
Shaorong Li
Xiaowei Guo
Lazarouk, S. K.
Keywords: публикации ученых;photoluminescence;silicon quantum dots;oxygen defects;quantum yield
Issue Date: 2025
Publisher: Royal Society of Chemistry
Citation: Facile synthesis of silicon quantum dots with photoluminescence in the near-ultraviolet to violet region via wet oxidation / Yizhou He, Qianxi Hao, Chi Zhang [et al.] // Journal of Materials Chemistry C. – 2025. – Vol. 13, iss. 3. – P. 1228–1242.
Abstract: To extend the photoluminescence (PL) of silicon quantum dots (SiQDs) into the near-ultraviolet–violet (NUVV) region, the size of SiQDs must be reduced to less than 1.53 nm. However, this significantly increases both the difficulty and the cost of synthesis. Herein, we report a facile wet oxidation treatment to obtain SiQDs with PL emission in the NUVV region while elucidating their emission mechanism. The synthesized SiQDs exhibit an average diameter of 4.95 nm, with F-band emission peaks ranging from 332 to 420 nm, which are blue-shifted by approximately 500 nm compared to the near-infrared (NIR) counterparts lacking wet oxidation treatment. Notably, the synthesized SiQDs achieve an average photoluminescence quantum yield (PLQY) of 19.05%, a 6.24-fold increase over their NIR counterparts. Comprehensive examinations attribute this NUVV emission to two types of oxygen defects: peroxy linkage (POL) and oxygen-deficient center (ODC(I)). Under wet oxidation conditions, SiOx networks containing these oxygen defects, rather than simple Si–O–Si groups, are formed on the surface of SiQDs. Furthermore, after storing the SiQDs in ambient air for approximately two months, no intrinsic or additional defect-induced emissions were observed, and 88% of the initial PLQY was retained, indicating favorable stability of the SiQDs. This study provides valuable insights into oxygen-related defect-induced emission mechanisms on SiQD surfaces.
URI: https://libeldoc.bsuir.by/handle/123456789/62988
DOI: 10.1039/d4tc02095b
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
Yizhou_He_Facile.pdf4.55 MBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.