Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/61467
Title: Domain adaptive dehaing based on physical properties
Authors: Feng Ling
Yan Zhang
Keywords: материалы конференций;Image enhancement;Domain adaptation;Image restoration
Issue Date: 2025
Publisher: БГУИР
Citation: Feng Ling. Domain adaptive dehaing based on physical properties / Feng Ling, Yan Zhang // Информационная безопасность : сборник материалов 61-й научной конференции аспирантов, магистрантов и студентов БГУИР, Минск, 21–25 апреля 2025 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2025. – С. 132–133.
Abstract: Deep learning-based single image dehazing has advanced significantly, yet models trained on synthetic data struggle in real-world scenarios. Tо address this cross-domain gap, we propose a Synthetic-to-Real Dehazing framework comprising two key components: 1) A domain adaptation network that generates Synthetic-to-Real hazy images by learning real haze characteristics through depth-transmission map correlations, and 2) A physics-guided dehazing network based on the atmospheric scattering model. Crucially, our framework requires no real hazy data during dehazing training. Experiments demonstrate our framework's superior cross-domain dehazing generalization.
URI: https://libeldoc.bsuir.by/handle/123456789/61467
Appears in Collections:Информационная безопасность : материалы 61-й научной конференции аспирантов, магистрантов и студентов (2025)

Files in This Item:
File Description SizeFormat 
Feng_Domain.pdf443.09 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.