https://libeldoc.bsuir.by/handle/123456789/61467
Title: | Domain adaptive dehaing based on physical properties |
Authors: | Feng Ling Yan Zhang |
Keywords: | материалы конференций;Image enhancement;Domain adaptation;Image restoration |
Issue Date: | 2025 |
Publisher: | БГУИР |
Citation: | Feng Ling. Domain adaptive dehaing based on physical properties / Feng Ling, Yan Zhang // Информационная безопасность : сборник материалов 61-й научной конференции аспирантов, магистрантов и студентов БГУИР, Минск, 21–25 апреля 2025 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2025. – С. 132–133. |
Abstract: | Deep learning-based single image dehazing has advanced significantly, yet models trained on synthetic data struggle in real-world scenarios. Tо address this cross-domain gap, we propose a Synthetic-to-Real Dehazing framework comprising two key components: 1) A domain adaptation network that generates Synthetic-to-Real hazy images by learning real haze characteristics through depth-transmission map correlations, and 2) A physics-guided dehazing network based on the atmospheric scattering model. Crucially, our framework requires no real hazy data during dehazing training. Experiments demonstrate our framework's superior cross-domain dehazing generalization. |
URI: | https://libeldoc.bsuir.by/handle/123456789/61467 |
Appears in Collections: | Информационная безопасность : материалы 61-й научной конференции аспирантов, магистрантов и студентов (2025) |
File | Description | Size | Format | |
---|---|---|---|---|
Feng_Domain.pdf | 443.09 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.