https://libeldoc.bsuir.by/handle/123456789/62200| Title: | An improved q-learning algorithm with optimized initialization and annealed boltzmann exploration |
| Authors: | Tang Yi German, Yu. O. |
| Keywords: | материалы конференций;enhancement method;Q-learning;geometric priors |
| Issue Date: | 2025 |
| Publisher: | БГУИР |
| Citation: | Tang Yi. An improved q-learning algorithm with optimized initialization and annealed boltzmann exploration / Tang Yi, Yu. O. German // Информационные технологии и системы 2025 (ИТС 2025) : материалы международной научной конференции, Минск, 19 ноября 2025 / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Л. Ю. Шилин [и др.]. – Минск, 2025. – С. 265–266. |
| Abstract: | This paper proposes a hybrid enhancement method for Q-learning that combines direction-sensitive Q-table initialization with annealing-based Boltzmann exploration. Initialization leverages geometric priors to bias actions toward the target without leaking obstacle information; the annealing-based Boltzmann method achieves a smooth transition from extensive exploration to exploitation. By leveraging the symmetry of isometric states and an adaptive exploration strategy, the improved Q-learning algorithm achieves faster convergence in discrete action environments. |
| URI: | https://libeldoc.bsuir.by/handle/123456789/62200 |
| Appears in Collections: | ИТС 2025 |
| File | Description | Size | Format | |
|---|---|---|---|---|
| Tang_Yi_An_improved.pdf | 1.06 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.