Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/62200
Title: An improved q-learning algorithm with optimized initialization and annealed boltzmann exploration
Authors: Tang Yi
German, Yu. O.
Keywords: материалы конференций;enhancement method;Q-learning;geometric priors
Issue Date: 2025
Publisher: БГУИР
Citation: Tang Yi. An improved q-learning algorithm with optimized initialization and annealed boltzmann exploration / Tang Yi, Yu. O. German // Информационные технологии и системы 2025 (ИТС 2025) : материалы международной научной конференции, Минск, 19 ноября 2025 / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Л. Ю. Шилин [и др.]. – Минск, 2025. – С. 265–266.
Abstract: This paper proposes a hybrid enhancement method for Q-learning that combines direction-sensitive Q-table initialization with annealing-based Boltzmann exploration. Initialization leverages geometric priors to bias actions toward the target without leaking obstacle information; the annealing-based Boltzmann method achieves a smooth transition from extensive exploration to exploitation. By leveraging the symmetry of isometric states and an adaptive exploration strategy, the improved Q-learning algorithm achieves faster convergence in discrete action environments.
URI: https://libeldoc.bsuir.by/handle/123456789/62200
Appears in Collections:ИТС 2025

Files in This Item:
File Description SizeFormat 
Tang_Yi_An_improved.pdf1.06 MBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.