Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/62254
Title: Network traffic analysis based on deep learning algorithms
Authors: Xia Enduo
Fan Linda
He Hongyan
Keywords: материалы конференций;network anomaly;state-of the-art methods
Issue Date: 2025
Publisher: БГУИР
Citation: Xia Enduo. Network traffic analysis based on deep learning algorithms / Xia Enduo, Fan Linda, He Hongyan // Информационные технологии и системы 2025 (ИТС 2025) : материалы международной научной конференции, Минск, 19 ноября 2025 / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Л. Ю. Шилин [и др.]. – Минск, 2025. – С. 137–260.
Abstract: We propose a unified anomaly detection framework based on CNN-BiLSTM-Attention to address the low accuracy and high false positive rates of existing traffic-based network anomaly detection methods. The framework represents each network session as a 2D grayscale image, uses 2D-CNN for spatial feature extraction, BiLSTM for long-range temporal dependency capture, and an attention mechanism to highlight the most discriminative features. Experiments on the USTC-TFC-2016 and CICDDoS 2019 datasets show that this framework significantly outperforms state-of the-art methods in accuracy, detection rate, and false positive rate, demonstrating its effectiveness and generalization for network traffic classification.
URI: https://libeldoc.bsuir.by/handle/123456789/62254
Appears in Collections:ИТС 2025

Files in This Item:
File Description SizeFormat 
Xia_Enduo_Network.pdf3.84 MBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.