https://libeldoc.bsuir.by/handle/123456789/62254| Title: | Network traffic analysis based on deep learning algorithms |
| Authors: | Xia Enduo Fan Linda He Hongyan |
| Keywords: | материалы конференций;network anomaly;state-of the-art methods |
| Issue Date: | 2025 |
| Publisher: | БГУИР |
| Citation: | Xia Enduo. Network traffic analysis based on deep learning algorithms / Xia Enduo, Fan Linda, He Hongyan // Информационные технологии и системы 2025 (ИТС 2025) : материалы международной научной конференции, Минск, 19 ноября 2025 / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Л. Ю. Шилин [и др.]. – Минск, 2025. – С. 137–260. |
| Abstract: | We propose a unified anomaly detection framework based on CNN-BiLSTM-Attention to address the low accuracy and high false positive rates of existing traffic-based network anomaly detection methods. The framework represents each network session as a 2D grayscale image, uses 2D-CNN for spatial feature extraction, BiLSTM for long-range temporal dependency capture, and an attention mechanism to highlight the most discriminative features. Experiments on the USTC-TFC-2016 and CICDDoS 2019 datasets show that this framework significantly outperforms state-of the-art methods in accuracy, detection rate, and false positive rate, demonstrating its effectiveness and generalization for network traffic classification. |
| URI: | https://libeldoc.bsuir.by/handle/123456789/62254 |
| Appears in Collections: | ИТС 2025 |
| File | Description | Size | Format | |
|---|---|---|---|---|
| Xia_Enduo_Network.pdf | 3.84 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.